
S2M0040120N2 1200V SIC POWER MOSFET+20A SiC SBD

Description

S2M0040120N2 is SiC Power MOSFET Module packaged in SOT-227 case. The device is a high voltage n-channel enhancement mode MOSFET that has very low total conduction losses and very stable switching characteristics over temperature extremes. The S2M0040120N2 is ideal for energy sensitive, high frequency applications in challenging environments.

Circuit Diagram

Features

- Positive temperature characteristics, easy to parallel.
- Low on-resistance Typ. RDS(on) = 40m^{\text{Q}} .
- · Fast switching speed and low switching losses.
- · Very fast and robust intrinsic body diode.
- Process of non-bright Tin electroplatin

Applications

- EV Fast Charging Modules
- EV On Board Chargers
- Solar Inverters
- Online UPS/Industrial UPS
- SMPS (Switch Mode Power Supplies)
- DC-DC Converters
- ESS (Energy Storage Systems)

Maximum Ratings(T=25°C unless otherwise specified)

Characteristics	Symbol	Condition	Max.	Units			
SiC MOSFET							
Drain Source Voltage	V _{DSS}	V _{GS} = 0V, I _{DS} = 100uA, T _C = 25°C	1200	V			
Gate Source Voltage	V_{GSS}	T _C = 25 ° C, Absolute maximum values, AC (f>1Hz)	-10 to 25	V			
Gate Source Voltage	V_{GSOP}	T _C = 25°C Recommended Operational Values	-5 to 20	V			
Continuous Drain Current	I _D	V _{GS} = 20V, T _C = 25°C	57	Α			
	I _D	V _{GS} = 20V, T _C = 100°C	40	Α			
Pulsed Drain Current	I _{D,pulse}	Pulse width tP limited by T _J max	160	Α			
Power Dissipation	PD	T _C =25°C, T _J = 175 °C	312.5	W			
	I	SiC SBD	I				
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	-	1200	V			
Average Rectified Forward	I _{F (AV)1}	T _C =25°C	57	А			
Current	I _{F (AV)2}	T _C =150°C	20	А			
Peak One Cycle Non-Repetitive	I _{FSM1}	10ms, Half Sine pulse, T _C =25°C	248	А			
Surge Current	I _{FSM2}	10ms, Half Sine pulse, T _C =110°C	205	А			
Popolitivo Dook Forward Surgo	I _{FRM1}	10ms, Half Sine pulse , T _C =25°C	86	Α			
Repetitive Peak Forward Surge Current	I _{FRM2}	10ms, Half Sine pulse , T _C =110°C	56	А			
Power Dissipation	P _{tot1}	T _C =25℃	245.9	W			
Power Dissipation	P _{tot2}	T _C =110°C	106.6	W			

[•] China - Germany - Korea - Singapore - United States • • http://www.smc-diodes.com - sales@ smc-diodes.com •

Electrical Characteristics(T=25°C unless otherwise specified)

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Units
Drain Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 100uA	1200			V
Onto There had Nothern	.,	$V_{DS} = V_{GS}$, $I_D = 10$ mA	1.8	2.0	4	V
Gate Threshold Voltage	$V_{\text{GS(th)}}$	V _{DS} = V _{GS} , I _D = 10mA, T _J = 175 °C		1.4		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V		1	100	uA
Gate Source Leakage Current	I _{GSS}	V _{GS} = 20V, V _{DS} = 0V			250	nA
Desir Course On Otata Desirtan	-	V _{GS} = 20V, I _D = 40A		44	52	mΩ
Drain Source On-State Resistance	R _{DS(on)}	V _{GS} = 20V, I _D = 40A, T _J = 175 °C		82		mΩ
Tuesday disabayas		V _{DS} = 20 V, I _{DS} = 40 A		14		S
Transconductance	gfs	V _{DS} = 20 V, I _{DS} = 40 A, T _J = 175 °C		11		S
Input Capacitance	Ciss	V _{GS} = 0V,		2748		
Output Capacitance	Coss	V _{DS} = 1000V		169		pF
Reverse Transfer Capacitance	Crss	V _{AC} = 25mV f = 1MHz		5		
C _{OSS} Stored Energy	Eoss	1 - 11/11/12		84		uJ
Turn-On Switching Energy	Eon	V _{DS} = 800V, V _{GS} = -5/20V		1.2		
Turn-Off Switching Energy	Eoff	$I_D = 40A, R_{G(ext)} = 2.5\Omega, L= 99uH$		0.4		mJ
Turn-On Delay Time	t _{d(on)}	V _{DS} = 800V, V _{GS} = -5/20V		43		
Rise Time	t _r	$I_D = 40A, R_{G(ext)} = 2.5\Omega$		14		
Turn-Off Delay Time	$t_{\text{d(off)}}$	Inductive Load Timing relative to VDS Per IEC60747-8-4 pg 83		30		ns
Fall Time	t _f	7 7 50 1 61 12 0007 47 -0 4 pg 00		18		
Internal Gate Resistance	R _{G(int)}	f = 1MHz, VAC = 25 mV		4.5		Ω
Gate to Source Charge	Q_{gs}	V _{DS} = 800V, V _{GS} = -5/20V		4.5		
Gate to Drain Charge	Q_{gd}	I _D = 40A		34		nC
Total Gate Charge	Q_g	Per IEC60747-8-4 pg 21		42		

[•] China - Germany - Korea - Singapore - United States • • http://www.smc-diodes.com - sales@ smc-diodes.com •

Reverse Diode Characteristics:

Characteristics	Symbol	Condition	Тур.	Max.	Units
Diode Forward Voltage	W	V _{GS} = -5V, I _{SD} = 20A	4.1		V
Diode Forward Voltage	$V_{ extsf{SD}}$	V _{GS} = -5V, I _{SD} = 20A, T _J =175°C	3.6		V
Continuous Diode Forward Current	ls	T _C = 25°C		63	А
Reverse Recovery Time	t _{rr}	V _{GS} = -5V, I _{SD} = 40A, T _J = 25°C	63		ns
Reverse Recovery Charge	Q _{rr}	V _R = 800V	301		nC
Peak Reverse Recovery Current	I _{mm}	dif/dt = 1047A/μs	9.3		А

SiC SBD:

Characteristics	Symbol	Condition	Тур.	Max.	Units
Forward Voltage Drop*	V_{F1}	@ 20A, Pulse, T _J = 25 °C	1.5	1.8	V
	V_{F2}	@ 20A, Pulse, T _J = 175 °C	2.2	3.0	V
Reverse Current*	I _{R1}	$@V_R = \text{rated } V_R$ $T_J = 25 ^{\circ}\text{C}$	1	25	uA
	I _{R2}	$@V_R = \text{rated } V_R$ $T_J = 175 ^{\circ}\text{C}$	10	150	uA
Junction Capacitance	Ст	VR=0V, Tj=25℃,f=1MHz	1620	-	pF
Reverse Recovery Charge	Qc	I _F = 20A, di/dt = 200A/μs VR = 800 V, T _J =25°C	124.89	-	nC
Capacitance Stored Energy	EC	VR = 800 V	64.20	-	μJ

^{*} Pulse width < 300 μ s, duty cycle < 2%

[•] http://www.smc-diodes.com - sales@ smc-diodes.com •

Module Characteristics:

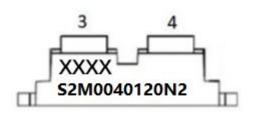
Characteristics	Symbol	Condition	Min.	Тур.	Max.	Units
Isolation test voltage	VISOL	RMS, f=50Hz, t=1min			2.5	kV
Terminal connection torque	.,	Screw M4	1.1		1.5	N•m
Mounting torque	M	Screw M4	1.1		1.5	N•m
Weight of module				27		g
	G	Terminal to heatsink		10.61		mm
Creepage distance		Terminal to terminal		10.37		mm
Clearance		Terminal to heatsink		6.7		mm
		Terminal to terminal		4.05		mm

Thermal-Mechanical Specifications:

Characteristics	Symbol	Condition	Specification	Units
Junction Temperature	TJ	-	-55 to +175	°C
Storage Temperature	T _{stg}	-	-55 to +175	°C
Typical Thermal Resistance Junction to Case	R ₀ JC	per MOS*	0.363	°C/W
Typical Thermal Resistance Junction to Case	R _{0JC}	per SBD*	0.700	°C/W

^{*} By simulation

Ordering Information:

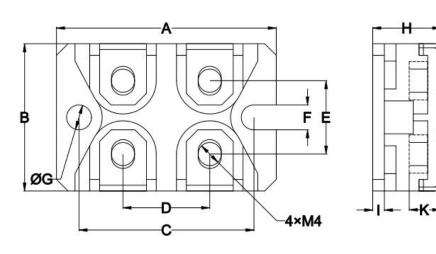

Device	Package	Shipping
S2M0040120N2	SOT-227	36pcs /BULK

[•] http://www.smc-diodes.com - sales@ smc-diodes.com •

Marking Diagram

Where XXXXX is YYWWL

= Device Type S2M 0040


= R_{DS}(on) = Reverse Voltage (1200V) = Package 120

SSG = SSG = Year WW = Week = Lot Number

Cautions: Molding resin

Epoxy resin UL:94V-0

Mechanical Dimensions SOT-227

SYMBOL		sions in neters	
	Min.	Max.	
А	37.8	38.2	
В	24.8	25.2	
D	14.5	15.5	
E	12.2	13.2	
F	4.1	4.31	
G	φ4.1	φ4.31	
Н	11	12.5	
I	1.9	2.1	
K	4.3 6.5		

S2M0040120N2

Technical Data Data Sheet N2652, REV.-

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..